WPI Researchers Unlock the Silicate Magic for Safer, Cheaper, and More Efficient Batteries
Xiaowei Teng leads team eyeing new way of using iron to create high-performance energy storage
The world is rapidly transitioning to renewable power, but there are shortcomings. Solar power falls at night, and wind power recedes and ascends irregularly. New technologies need to be developed that can store energy from the electrical grid when theres a surplus and deploy it when theres not enough.
Rechargeable lithium-ion batteries play a crucial role in everyday life, powering devices from smartphones to electric vehicles. However, they rely on limited resources like lithium, nickel, and cobalt, raising concerns about sustainability and cost.
Xiaowei Teng, the James H. Manning Professor in Chemical Engineering at WPI, is leading a team to explore new battery technologies for grid energy storage. The teams recent results, published in the European scientific journal
ChemSusChem, suggest that iron, when treated with the electrolyte additive silicate, could create a high-performance alkaline battery anode. The second most abundant metal in the Earths crust after aluminum, iron is far more sustainable than nickel and cobalt. The United States alone recycles approximately over 40 million metric tons of iron and steel from scrap each year.
A chemical compound of silicon and oxygen, silicate has long been used as an inexpensive and simple agent in glass, cement, insulation, and detergents, said Sathya Jagadeesan, a PhD student at WPI and lead author on the paper. The team discovered that silicate also strongly interacts with battery electrodes and suppresses hydrogen gas generation. Teng said this new process could improve the alkaline iron redox chemistries in iron-air and iron-nickel batteries for energy storage applications, such as microgrids or individual solar or wind farms.